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ABSTRACT 

e* Tha Njlmbua I X  madium resolution infra;ro& radiome-t;ar meamred 

atmospheric radiation i n  five spectral  regions. 

ments i n  a two-micron-wide spectral interval  within the 15 micron 

Radiance measure- 
** 

rlvsbiaa of vcdrtically averaged 

- stratospheric temperatures and made possible the  daily monitoring of 

"t global stratospheric temperature patterns. The experiment las ted  from 

' May 15 through July 28, 1966, For t h i s  period, stratospheric tempera-* 

, ture maps were produced by a computer program which included a method 

t o  eliminate the  effect  of dense high clouds on the 14  t o  16 micron 

measurements. 

and some resu l t s  of the Nimbus I1 experiment are described. 

The method of measurement, the applied correction model, 

Due t o  the seasonal res t r ic t ion  of the experiment, the  derived 

global stratospheric temperature distributions exhibit the most 

interesting events over the  southern hemisphere, where the southern - 
polar winter vortex shows a pronounced asymmetry during the early 

winter of 1966. 

mound the South Pole and f ina l ly  vanishes, 

cooling pattern seems t o  emphasize th important role oi dynamic pro- * 

cesses in the ne% ~00l . i  of the  pola winter stratospher'e, 

Within the 70 day8 of observation, t h i s  asymmetry t rave ls  

The resultant horizontal 
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nfE: REMOT8 SENSING CN'STRATOSPHERXC TEMPERATURES AM) SOME RESULTS 

1, Introduction 

One of the  serious problems i n  stratospheric meteorology i s  the  

Lack of contjtnuous observationaJ. data over large part8 of the  &lobe. 

Figure 1 represents t he  effect ive global network of radiosonde measure- 

ments at the 3Omb (approx. 25km) and the lOmb (approx. 30km) levels on 

a single day i n  January 1964. 

It should be noticed tha t  a barely suff ic ient  network density ex is t s  

only over the northern hemispheric continents while over the oceans, 

the t ropics ,  subtropics, and almost the en t i r e  southern hemisphere we 

suffer  a severe lack of information. 

P 

There has been l i t t l e  change since tha t  time, 

1 ,  

A satellite i n  a quasi-polar orb i t  provides an excellent platform 

Radiometric experi- for  

ments on board the  TIROS V I 1  ,and Nimbus 11 s a t e l l i t e s  have shoA 

complete observation of the earth (Ref 1) 

t h a t  measurements of t h e  atmospheric emission within the 15 micron 

carbon dioxide band can provide information on the stratospheric 

temgerature s t ructure  as was first suggested by KAPLAN (4 ) .  
(2) (3) 9 

A 
I n  this preeentation, the method of radiometric measurement and 
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2, The Theoret$cal, Background of Remote ,Sensing Techniques- 

s* 

top of the  atmosphere ( s a t e l l i t e  a l t i tude)  and measured through a f i l t e r  
a 

system can be described by the radiative t ransfer  equation, i f  blackbody 

radiation is assumed, i n  the form 
A t  A2 c 

x, A, llro 

I d= 3% ( $ ~ A P ~ ( A \  B(A&)dA +Lj 7r 2 ? ) B ( ~ , T b p  ah dhdA I 11 
where N is t h e  detected radiance; A 
function, m ) ~  0 outside the  interval  {A,,hr) j r6,4)= transmissivity from 

a level  h upward;rs= transmassivity from the  radiating surface upward; 

s(h ,T )  = Planck function; T = absolute temperature;% = temperature 

of the  radiating surface; and h - height. 

side of t h i s  equation describes the  contribution of surfaces, both solid 

and l iquid (such as the earth and clouds) t o  the recorded radiance; the  

second term describes t h e  radiation originating from the  gaseous compounds 

of the  . atmosphere. Y 

= wave length; $[A) is the f i l t e r  c 

The first term on the  r ight  

'By fkt &e q u ~ t i o h  La3 st ructural  parameters of the atmosphere can 

be derived from a radiometpic measurement of N under two different  

special conditions : 

(a) I n  an atmospheric window ( i f  the  atmosphere were completely trans- 

parent * &.e., q < h )  = 1) the second term on the right side of equation 

[ 11 equals zerb Thus Eqn .11] becomes 
, 

., 

L 



, 

' I  

With g ( h )  being known, t he  measured radiance depends on the  
Q 

If .the radiometer is calibrated against a black body radiator ,  the 

recorded radiance readily can be converbed t o  'equivalent blackbody 

temperature' (5)  a This means--in meteorological terms--the earth 

mrfaaar $ ~ r n ~ ~ r ~ ~ u ~ ~  or in afoudy area %be aloud top $ ~ r n R ~ ~ ~ ~ ~ r ~  could 

be derived from radiometric measurements i n  an atmospheric "window': 

Experiments of t h i s  type were very successfully flown on the TIROS I f g  

111, I V ,  V I I ,  and Nimbus I and 11 meteorological satellites leading 

t o  detailed and global pictures of horizontal and ver t ica l  cloud dis- 

t r ibut ion a8 w e l l  as a mapping of sea surface and land temperatures 

under c lear  sky conditions. 

*It 

I p u  
* 

, 

(b) I n  a strong absorption band of one of' the  predominant atmospheric 

absorbers l i k e  carbon dioxide, water vapor or  ozone, where the*trans- 

mission from the ground is  zero, t he  first term of equation[l]vanishes, 

leading t o  , ~~~~~~ ~ 

I n  t h i s  case, N ie determined by two unknown variables, namely 

which characterizes the  ver t ica l  .gas distribution, and B ( 

depends on the averaged gas temperature, 

be known i n  order t o  interpret N ' i n  terms of the other one, 

inferences of thendistribution of the highly variable gases (water vapor 

and ozone) are possible, if the three-dimensional temperature dis t r ibut ion 

i n  the atmosphere can be-given. 

in the 6,3 t o  6*7 micron water vapor band w i t h  the TIROS 11, 111, I V ,  

N A " j i  'UUJ ah 3 [A,rchl)d hd A ~33, 

% 
A, t;=o 

,TI, which 

One of these two factors has t o  
I .  

In  principal,  
hori aehht 

Experiments of t h i s  type were performed 
* .  

i - 9 b b d  hori;?on+a\ 
..and Nimbue IT satellites leadin disf t ibut ions of water vapor 
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i n  the upper tropoephere BBB for example (13) e 

The second possibi l i ty ,  namely the derivation of the ver t ica l  
e 

mean temperature i f  t h e  gas distribution is known, was successfully 

accomplished by TIROS V I 1  and Nimbus TI experimentshfor the well-mixed 

atmospheric carbon dioxide, which has a strong absorption band at 3.5 

micron e 

(2)@) 

3, The Snterpretation of Radiance Measurements w i t h i n  the  15 Micron 

Band 
__I_ - .  - >  . _- 

Pram equation 3 follows t h a t  NA can be expressed a8 
- _ _ _  . 

+ j!Y(h)dh * 

h=o 

where 

descr ibes  the v a r i a t i o n  with height  of t he  con t r ibu t ion  of t h z  ind iv idua l  

atmospheric layers  t o  the  15  micron r ad ia t ion  detected by the satell i te 

.* radiometer, 

This  weighting funct ion has a mgxiinum i n  the lower s t r a tosphe re ,  Due t o  

the increasing gas dens i ty  with decreasing he ight ,  t h e  emit ted energy p e r  u n i t  

volume increasgs downward' Below a c e r t a i n  a l t i t u d e  less and less r a d i a t i o n  

penet ra tes  upward because u 
. .  

t h e  absorption i n  the  .overlying l aye r s .  
I 

4 .  
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The temperature t o  be derived from equation 3 i o  therefore 8, 

weighted mean temperature, weighted over the entire carbon dioxide 

atmosphere with t he  function y (h) * 

Tha we i g M  h a  lcruraC ion (h) depends - smong &her thrlngs 

on the  f i l t e r  function 

3 where the f i l t e r  functions and the  resulting weighting 

for various atmospheres are given for the TIROS V I 1  and Nimbus I1 

3.5 micron radiarnet 

(h) ,  This .Is i l l u s t r a t ed  by Figures 2 and 

functions 

The wider f i l t e r  spectral  range of t he  Nimbus 11 radiometer 

resu l t s  i n  a lower a l t i tude  of the  maximum contribution and i n  a 

much larger tropospheric contribution t o  the recorded radiance, as 

compared with TIROS VII. How much (h) depends on the  atmospheric 

structure,  is shown by Figure 3, For a l l  t h e  

atmospheres, t h e  weighting 

which means t h a t  the measured horizontal dis t r ibut ion of outgoing 

f’unction peaks i n  the lower stratosphere, 

radiance should reflect the horizontal temperature distkkbution within 

t h i s  layerl  

The radiometer is  calibrated against a blackbody of known temperature 

(5). 

temperature of a blackbody of t he  Same radiance k”equiva1ent blackbody 

Thus, the  measured radiances can be interpreted, in  terms of the  
< 



The "equivalent blackbody temperature" then representa - as mentioned 
n 

before - the  weighted ver t ica l  mean temperature of the  atmosphere, with 

(4) as the  weighting func thn ,  

From t h e  TIROS VI1 measurements, it has been shown t h a t  stratospheric 
'4 

temperature distributions c a b  be derived from 15 micron radiometry 

(2) (7) (8)* 
between radiosonde-derived. hemispheric patterns of 3Omb temperatures ( 9 )  

{ 10)  and lOmb/lOOmb thickness patterns (ver t ica l  mean temperatures)(ll) " 

onhone hand and s a t e l l i t e  derived stratosbheric temperatures (TBB) on . 

It has also been shown tha t  a high correlation ex is t s  
i 

+he 

. -  t h e  other, 

%%e interpretat  ion of t h e  derived equivalent bbtickbody temperature 
*~ 

as ver t ica l  mean stratospheric temperature, however, holds exactly only 

i n  a gaseous atmosphere, i.e., i n  t he  absence of clouds. I f  suf f ic ien t ly  

dense clouds do exis t  within the  a l t i tude  range of y (h )  , radiation 

from below. the clouds does not penetratex This will cause a reduction 
cto fhQ sQfe&#e+ 

* h a  viea 
of the outgoing radiance because,, cloud itself radiates with a lower 

temperature than the atmosphere below it. The effect  w i l l  be larger for 

., . - 

higher clouds. 

depend on the f i l t e r  properties of the instrument, 

Figure 3 demonstrates how much the cloud effect will 

While i n  the case of 

QIROS V I 1  only a small percentage of tropospheric radiation passes the  

f i l t e r  of the radiometer, i n  the  case of Nimbus TI 15 t o  20% came from beluw 

the  tropopause, and a very significant effect of dense high cloud systems * 

;ob the.3.5 micron measurements resulted. 

t 
I 
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Figure 4 shows a photofacsmile display of the' medium resolution 

radiometer measurements along par ts  of Nimbus If orbi t  344/5 on 

June 10, 1966, In t h i s  figure, taken from the  Nimbus I1 Pic tor ia l  

Olcbatogb (18) hsgh re$&&%ion ~~~~n~~~~~~ (h5eh ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ )  

represented by dark grey tones, low intensi t iea  (low temperatures) by 

l i gh t  grey or  white. 

"window") measurements of figure 4, the bright areas indicate a number, of, cloud 

systems of various sizes and at different  geographic locations, 

In the case of the 10-11 micron (atmospheric 
, r -  2 

The 

photographic imagery of the  14-16 micron measurements, which shows 

well discernable grey tones from the  darker (warm) Arctic toward t h e  

brighter (cold) Antarctic stratdsphere, exhibits,  however, a considerable 

"background noise ' The cloud pattern of the  "window" channel clearly 

appears superimposed upon the stratospheric temperature distribution, 

Therefore, the cloud effect  has t o  be eliminated before stratospheric. 

temperature distributions can be derived from the measurements. A 

method t o  accomplish thejeliminatfon of the  cloud effect w i l l  be described 

in fhf9 f O l h W % n g  SeGt iOt le  

4, The Elimination of the Cloud Effect on the Nimbus I1 15 Micron 

Measurements. 

The basic concept of the  method t o  eliminate the cloud effect  from 
5 

the  Eimbus 11 15 micron measurements was first t o  determine the  cloud 

effect from theoret ical  computations of the outgoing radiance under 

various atmospheric conditions and second t o  apply the proper correction . 
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t o  each single measurement using simultaneous "window" channel 
e 

measurements t o  derive the needed actual cloud top height. - 
The outgoing infrared radiation for  7 atmospheres (different 

. months and la t i tudes)  and various nadir angles within the  

Nimbus IS 15 micron f i l t e r  range w a s  computed from the  radiative 

transfer equation for c lear  sky conditions and cloud decks assumed at 

various a l t i tudes  using 8. computer program developed by V. Kunde (916 

This  yielded a quantitative measure for  t he  cloud effect .  The com- 

putations showed tha t  t he  cloud effect is almost the  same fo r  a l l  atmospheres 

up t o  cloud top heights of 10 kilometers. 

large differences occur for  different geographic areas and seasons. 

Fig, 5 and 6 are examples fo r  strong and weak effects  of these high cloud 

systems. 

pression of the  derived TBB value is close t o  boIC fer vertical view, it 

increases t o  only 5 O K  i n  the 45ON winter  atmosphere at 1 4  kilometers 

but t o  l l ° K  at the same a l t i tude  in the  t rop ics6  

I 

Above t h i s  height, however, 

While far a cloud top at 10 kilometers in both cases the  de- 

The cloud effect  wa8  computed for  the ISo, 30°, 45*, and 6 0 * ~  

U, S, Standard Atmospheres and was determined for  every month and scan 

nadir angle. 

measurements the  actual cloud top heights have t o  be derived fromthe 

"window" channel measurements. 

completely free of atmospheric absorption, corrections have to be made 

for residual. water vapor and 0zon.e ebsorptione These corrections 

However, before- applying khese computed amounts t o  t h e  

As the 10-11 micron "window" is not 

$ 

' 
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were computed from the radiative t ransfer  equation for the Nimbus I1 

10-11micron f i l t e r  range and the  sme group of atmospheres. One 

example of the  resu l t s  is given i n  Figure 7. 

cloud top temperature can be obtained for  any measured equivalent 

From t h i s  diagram the  

blackbody temperature i n  a t ropica l  atmosphere. 

cloud top temperature, cloud top height can be derived for the  proper 

temperature-height relationship. 

relationship has been b u i l t  i n ,  thus the  correction of the 15 micron 

channel measurement can readily be taken f'rom t h i s  diagram. 

From the  obtained 

I n  Figure 8, th i s  
' 

On the  basis of t h e  described model calculations, a computer 

program was developed: 

(a) t o  determine for each single observation the  cloud top height 

from the  concurrent "window" channel measurement and, with t h i s  

information, 

(b) 

5. 

t o  apply the  proper correction t o  t he  15  micron channel measuremen%c 

The Production of Nimbus XI Stratospheric Temperature Maps. 

The Nimbus 11 medium resolution infrared radiometer experiment 

las ted from May 15 through July 28, 1966, The o rb i t a l  inclination of 

100 degrees and the  average satell i te a l t i tude  of approximately l l O O k m  

,provided a complete scanning of the globe. 

radiometer channels (8 degrees f ie ld  of view) used for t h i s  analysis 

were sensit ive i n  t h e  1 4  t o  16 micron (carbon dioxide band) and in 

the 14 t o  11 micron ("window") spectral regionso This is described 

The two medium resolirhion 

' 
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After the elimination of cloud contamination, the corrected 
qa C l ~ t Z O d C  

measurements were automatically mapped by,, computer and printed 

Figure 9 is a typical  example of such a computer printout,  exhibiting 

the data taken in a 24 hour period over the globe, The "contouring 

method" was used i n  the printing process i n  order t o  give automatically 

(L pattern analytrie a i  thc.. data. t 

ion, the globerl ~ ~ & $ ~ ~ ~ ~ ~ ~ t ~  were produced in , 

- approximately 10 day intervals,  

daily maps could be analyzed without d i f f i cu l t i e s ,  as the  signal-to- 

noise-ratio was considerably improved by the wide spectral  response 

of t h e  Nimbus I1 instrument. 

the  northern hemisphere and the t ropics  do not exhibit significant 

s t ructural  changes during the period of May through July, 1966. 

fore, the following discussion will concentrate mainly on the  southern 

hemisphere which was i n  i ts  l a t e  fa l l  and ear ly  win ter  season. 

worthwhile emphasizing tha t  Nimbus I1 provided for  the first time a 

But, contrary t o  the  TIROS V I 1  experiment 

According t o  the season of t h i s  experiment, 

There- 

, . 
It is 

rea l ly  global picture of the stratospheric temperature dis t r ibut ion,  

including the southern polar region (3) where information is the most 
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6. Stratosplierid Circulation Features Revealed from t h e  Nimbus I1 

Measurements. 

The following discussion refers t o  Figure 10 t o  20, During the  period 

of the Nimbus If experiment, t h e  northern hemisphere passed t h e  climax of' 

i t a  warm eummcr circulation. 

any drast ic  changes. The warmest air was always located over the Arctic 

Ocean. Weak temperature gradients persfsted a l l  over the  hemisphere. ~ 

The temperature maximum occurred around July 1, 1966, w i t h  240°K over 

the  North Pole. 

The temperature dietribution d id  not show 

I 

The temperature dis t r ibut ion over the t ropics  was characterized by 

temperatures mainly from 220 t o  225'K between 30°N and 30's with a 

very islight north-to-south temperature gradient, 

temperature changes could be noticed during the period under investigationr 

No significant 

. I  The events. on, exh;Lbft ed thta nore dht ersst in 

May 

t h e  

The 

. ,  

21, 1966, the southern polar 

South Pole where it remained 

temperature structure of the  

asymmetry during the first 

warm air  over the  southern 

vortex was already w e l l  established over 

throughout the period of observation. 

polar vortex had, however , a remarkable 
six weeks a On May 21, extended 

South Atlantic and the southern 

areas of 

Indian Ocean 

caused a zone of remarkably strong meridional temperature gradient, 

During the  .following twenty days, an eastward motion of the  warm centers 

waE( absemtedr Thus, on June 20,  t he  warm air arrived over Australia 

, 



a 

and the  western South Pacific Ocean. 

however, the warm air retreated t o  lower la t i tudes ,  and the  polar 

vortex became thermally more symmetric, although 

waves were found %a %ravel around the vortex center, This s i tua t ion  

persisted Chroughouli July, 1966, 

During the second half of June, 

number of short 

.. . 
The center of the  southern polar vortex, although almost stationary 

during the ten-week period, was gradually cooling, From approximately * 

205°K around mid-May the  strafospheric temperature over central  Antarctica 

dropped t o  196'K at the beginning of July, but stayed almost isothermal 

throughout July, The maximum stratospheric cooling over t h e  en t i re  

period ( f ig ,  1.7) was not observed over the  Antarctic continent within the 

polar night region but over the southern South Atlantic and Indian Ocean 

at 55' t o  65Os. Figures 18 .t;o 20 indicateathat t h i s  cooling pattern was 

achieved by a d is t inc t  temperature wave which migrated around the  South' 

Pole over the higher mid-latitudes and showed a decreasing amplitude w i t h  

' I 

time, almost vanishing during July, 

observations suggest an important ro le  of dynamic processes in the  winterly 

cooling pattern within the southern hemispheric stratospheric polar vortex. 

A t  least during the described experiment, these dynamic processes seem 

t o  exceed by far the whnly fe;diatioq&Ly controlled cooling within the 

These findings from the .satellite 

, 



A 7, Conclusions 

The presented resu l t s  

radiometer experiment give 

I 

P. . -  
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of the Nimbus SI medium 

new evidence tha t  

complete global data coverage can be achieved 

meter i n  a quasi-polar orbi t ,  
. .  

radiometric measurements wi th in  the 15 micron 

resolution infrared 

by a scanning radio- 

carbon dioxide abaorp- 
I horiuohtql distributioh of' VQVticd meanj 

t i o n  band can provide a daily global survey of the), s t ra to-  

spheric temperature, 

the cloud influzence on the  15 micron measurements can be eliminated 

by use of a theoret ical  correct ion model including*wbdowm-channel 

radiometer measurements, 

significant circulation features of the  stratosphere can be derived 

from the obtained temperature patterns,  

importance for  large areas of the  world, l i ke  the oceans and the 

polar regions, where a serious lack of stratospheric informtion 

exis ts  a 

The TIROS VIf and the Nimbus 11 experiments have established a minimum 

This is of particu;lar 

- ,  

l imiting spectral  width (with the  attendant low signal-to-noise r a t i o )  and 

a maximum limiting spectral  width (with accompanying interference due t o  

high clouds), respectively, with regard t o  the in te rpre tab i l i ty  of the  15 

micron measurements i n  terms of stratospheric temperatures Thus, f'uture 

s a t e l l i t e  experiments l i k e  the one t o  be flown on the  forthcoming Nhbus B 

spacecraft; w i l l  achieve a compromise between the  signal-to-noise r a t i o  and 

the cloud ef fec t  and bring the  predominant part o f t h e  weighting function 



The described method of remote sensing of 

tures including the  data reduction system w i l l  

potential  for stratospheric research but might 

stratospheric tempera- 

not only have a valuable 

become of essent ia l  

- 

importance when real-time global stratospheric temperature observations 

are required for t h e  forthcoming supersonic transport operations in t h e  

t next decade. 
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10. Lie% of Figures 

& Available global. sadAssonde Qbsswa,%iono at  %he 3Qnb and lQmb 
Itsv@,ls on January 22, 1964, 60GMT ( x * IZIGMJ?, ( ) 
observations only) . 
Normalized f i l t e r  functions G( A )  of the  15 micron channels of 
the  TIROS VI1 and Nimbus I1 Medium Resolution Radiometers, 

TIROS V I 1  and Nimbus I1 f i l t e r  response (a f te r  V. Kunde ( 6 ) ) .  

Effect of a opaque cloud deck f i l l i n g  the f i e l d  of view of the  
Nimbus I1 radiometer on the measured equivalent blackbody tempera- 
ture (TBB) of the carbon dioxide channel ( 82 ground zenith angle) 

wind 

. .  Fig, 2 

Fig, 3 Weighting f'unctions T( h) for  different  atmospheres for  t h e  

r y & .  5 
I 

t 

i n  a t rop ica l  atmosphere. 

Effect of a opaque cloud deck f i l l i n g  the f i e l d  of view of the  
Nimbus 11 radiometer on t h e  measured equivalent blackbody 
temperature (TBB) of the carbon dioxide channel i n  mid-latitude 
winter atmosphere ( 0 = ground zenith angle). 

Diagram t o  correct t h e  Nimbus I f  MRIR "window" channel measure- 
ments for  residual water vapor and ozone absorption i n  a t rop ica l  
atmosphere. 

Fig. 6* 

Fig, 7 

L Fig, 8 Diagram t o  correct the Nimbus I1 MRIR CO channel measurements for 
t cloud contamination i n  a t rdpica l  atmospzere ( 7 = nadi r  angle, 
l = ground zenith angle). 

Fig. 4 Photofacsimile of Medium Resolution Infrared Radiometer (MRIR) 
measurements (Nimbus 11) i n  the  "Wfndow" and carbon dioxide 
channels, 

Typical example of a computer printout i n  polar stereographic 
projection covering the southern hemisphere from the South Pole 
(at the center of the map) t o  approximately boos. Contouring 
is applied i n  10% intervals. The i r r egu l s r i t i e s  i n  the  upper 
left and t he  lower center por2;Ton of the mag w e  caused by 
missing d&ab The geographic outlines are as in t h e  f'olloxing 

Fig. 9 

- .  - gigurerr. 
I 
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Fig, 10 Global stratospheric temperature distribution (OK) on May 21, 
1966 

Fig. 11 Global stratospheric temperature distribution (OK) on May 31, 
1966 + 

Fig. 12 Global stratospheric temperature distribution (OK) on June 10, 
1966. 

Fig" 13 Global stratospheric temperature distribution (OK) on June 20, 
3.966. 

I 

Fig, 1 4  Global stratospheric temperature distribution (OK) on July 1, 
1966 

Fig.  15 Global stratospheric temperature distribution (OK) on July 11, 

Fig. 16 Global stratospheric temperature d$stribution (OK) on July 24, 

1966. 

. 1966 . 
Fig. 17 Stratospheric temperature change over the southern hemisphere 

(in OK) from May 21 to July 24, 1966. 

Fig. 18 Stratospheric temperature change over the southern hemisphere 
(in OK) from May 21 to June 10, 1966, 

Fig, 19 Stratospheric temperature change over the aouthern hemisphere * 

(in OK) from June 10 to July 1, 1966. 
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Distribution functions y ( h )  for d i f ferent  atmospheres for  the TIROS VI1 -(a) 

. and the Nimbus I1 (b) 15 micron channel f i l t e r  response (a f t er  V.Kunde ( 6 ) ) .  
a 

Temperature prof i l e s  used in the cAculations are shown a t  l e f t ,  weighting 

functions for vert ica l  viewing and for  ground zenith angle of 70’ at r ight  i n  
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